Skip to main content

Machine Unlearning #2 (Regression)

Machine Unlearning is a series broken up into tiny, one-minute readable pieces to humor our ever-shortening attention span. Sharing the links to every single piece right below:


Regression is a popular machine learning technique used to predict target data based on a set of features. In classification, we train the system to assign distinctive labels to the object (Orange or Bananas in our previous example). Regression differs in the sense that here we are dealing with continuous variables.


Suppose that you have twenty thousand rupees with you and are planning to buy a new phone. You open up an e-commerce site and search for phones. A hundred results appear. You see names like Redmi, Oppo, Vivo, Realme, Asus, Nokia, and so on, all in your target range of ten thousand to twenty thousand. You are clearly confused. Therefore, you decide to have a deeper comparison.


You start plotting the prices of each phone and start noting down the features offered. As you watch closely, you realize that some features (like support for 4g and dual sim support) are offered by most of the phones while the presence or absence of some features affects the price. Models with additional features like full HD display and quad camera are priced above fifteen thousand while the others are at the lower end of the price range. Then you do a trade-off and decide on the phone that suits you best.


Now let us look at how we use similar plotting of continuous values to predict certain aspects of people. One of the favorite target groups for such regression analysis in our daily lives is, unfortunately, women. The character of a girl or a woman is often predicted by the time at which she goes out in the public.


Let us talk about our favorite random person, X. X is a college-going girl for now. If she is back home or hostel by six in the evening, she is supposed to be well mannered. If she stays out later than six or (god forbid) six-thirty, something is not right! For working women, we have benevolently pushed the boundaries to seven. Don’t even ask me about eight or later. When the brutal and horrific news of Nirbhaya came out several years ago, some people around me were wondering why she was out at that hour of the day. I could not agree with their line of thought at all. However, the prime convict Mukesh Singh had the same questions. Frankly, I do not think he is the sort of person you wanna hold up as your role model.


Timings are only one of the features employed to predict the character. Another common feature is the length of her skirt, with knees being a major benchmark. Another feature that holds interest is the length of your hair. It is interesting because this feature works in contrasting ways for men and women. The longer, the better for women. The shorter, the better for men.


How regressive, right?

Comments

Popular posts from this blog

അത് എന്ത് കൊണ്ടായിരിക്കും?

അത് എന്ത് കൊണ്ടായിരിക്കും? ആക്ട് 1 : നമുക്ക് ആ ജനൽ ഒന്ന് തുറന്ന് അപ്പുറത്തേക്ക് നോക്കാം. പാശ്ചാത്യനാട്ടിലേക്ക് നോക്കിയാൽ ദേ അവിടെ 65  കാരനായ ജെയിംസ് കാമറൂൺ എക്കാലത്തെയും ഹിറ്റ് ചിത്രമായ അവതാറിന്റെ സീക്വലുകൾ പ്ലാൻ ചെയ്യുന്നു. 73 വയസ്സുള്ള സ്റ്റീവൻ സ്പിൽബെർഗ് മികച്ച ചിത്രങ്ങളായ ബ്രിഡ്ജ് ഓഫ് സ്‌പൈസ് (2015), റെഡി പ്ലെയർ വൺ (2018) ഒക്കെ പുറത്തിറക്കിയത് ഈ ദശാബ്ദത്തിലാണ്. ഐറിഷ് മാൻ സംവിധാനം ചെയ്യുമ്പോൾ മാർട്ടിൻ സ്കോർസെസെ യുടെ പ്രായം 75  കഴിഞ്ഞിരിക്കുന്നു. ഈയിടെ ഇംഗ്ലീഷ് സംവിധായകനായ കെൻ ലോക് ഇന്റെ രണ്ടു പുതിയ ചിത്രങ്ങൾ കാണാൻ ഇടയായി. 2016 ഇൽ പുറത്തിറങ്ങിയ ഐ, ഡാനിയൽ ബ്ലേക്ക് എന്ന ചിത്രവും 2019  ഇൽ സോറി വി മിസ്സ്ഡ് യൂ എന്ന ചിത്രവും ഹൃദയസ്പർശിയായ രീതിയിൽ ആണ് ചിത്രീകരിച്ചിരിക്കുന്നത്. 70 വയസ്സുള്ള സ്പാനിഷ് സംവിധായകൻ പെഡ്രോ അൽമൊഡോവർ, 60 വയസ്സുള്ള ഇറാനിയൻ സംവിധായകൻ മാജിദ് മജീദി, 59 എത്തിയ ദക്ഷിണ കൊറിയൻ സംവിധായകൻ കിം കി ഡുക്, ഇവരൊക്കെ സാമൂഹിക പ്രസക്ത്തിയുള്ള, മേന്മയുള്ള ചിത്രങ്ങൾ ഇപ്പോഴും സംവിധാനം ചെയ്യുന്നു. ആക്ട്  2: ഇനി നമുക്ക് ജനൽ അടച്ച് അകത്തേക്ക് നോക്കാം. എവിടെ ആണ് നമ്മുടെ മുത

Planet Perillamus

  Planet Perillamus An excited Ethoruthan broadcasted his findings to the Inter Universe Lifeform Detection Council. ‘I have discovered life on another planet.’ ‘Oh not again, Mx Ethoruthan!’, the Chairman of the council, Dan Maraman, shot back.‘ This is the eleventh time you are making such a claim over the last six months. How many missions have we launched to verify your claim - and have even one bore any result? These voyages are damn expensive, you know.’ ‘Please hear me out, Mx Maraman! This is not like the previous cases. I have proof.’ ‘What proof?’ Senior agent Thengaenthu was intrigued. ‘Do I have permission to present my thoughts to the council?’ Ethoruthan asked Maraman, Dan. ‘Yeah! You may.’ the Chairman relented warily. ‘Okay here is the interesting part. The life forms on this planet have devised something called movies - where some of them write unreal descriptions about unreal persons, and someone else would behave like those unreal persons. These behaviors would be re

Movie Review : The Cabinet of Dr. Caligari

Title : The Cabinet of Dr. Caligari Language : Silent Movie Year : 1920 Director : Robert Wiene Genre : Horror IMDB Link Watch movie on YouTube Lead Role :   Friedrich Feher, Werner Krauss The movie is widely acknowledged as one of the landmark revolutionary offerings from the long gone era when movies did not speak. It may be technically incorrect to call a silent film German, nevertheless it was made in Germany during a time period when the European nation was in turmoils after the devastating World War I. The story begins with a young man by the name of Francis starts narrating the hardships faced by him and his fiancee (Jane) and the very peculiar, even horrifying doings of a strange man, Dr. Caligari. Dr. Caligari owns a stall at a nearby exhibition, and on display is a somnambulist Caeser, who allegedly has slept for 23 straight years! The doctor awakens him, and he answers questions asked by the spectators. To the horror of the locals, his prophecies comes true. Mean