Skip to main content

Machine Unlearning #0 (Intro)

You might be familiar with the term Machine Learning. Worry not if you have not, cause I have tried to give a gist of the concept here. The term has been in the limelight of late and has been tossed around rather liberally to denote anything related to artificial intelligence, robotics, and data mining. Machine Learning, as the name suggests, could simply mean the field of study of enabling the “machines” (computers) to “learn” from past experiences and make informed decisions in the future.  


Wait a minute! Learning from past experiences is something humans do, right? Exactly! The computer folks want computers to behave more and more like us. As if there aren't enough of us already. As the machines are becoming more like us, we are becoming more like them.

Introspection time! Most of us wake up every morning like clockwork! Then we rush through the morning routines - get dressed, wade through the traffic, and reach our offices or schools or wherever people expect us to be. We spend the most hours of most days of our lives there, doing what we call our work or our duty. What exactly is this work? In most cases, it would be a set of instructions laid out to us by some higher authorities. 


Let us assume that you work at a tea stall. You could be spending most of your time boiling milk and adding tea leaves and sugar to it. When the milk boils, it rises up almost instantaneously and spills over the pot. Obviously, you did not know that when you started the new job. It is when the milk actually got spilt and your superior made you clean up the mess, you realized that the stove must be turned off or the flame be lowered as soon as the milk is boiled. Here, you learned something from an experience. In very basic terms, this is the very essence of machine learning.


How do we make machines learn? Well, the techies have come up with some cool techniques to go about that. While there are numerous techniques, the most common ones include classification, regression, clustering, and reinforcement learning.


This is not a series on Machine Learning. Therefore, we would not be discussing the techniques in detail. However, in the following write-ups, we shall take up some of the machine learning terminologies and look at how we have been applying similar concepts in our daily lives in a not so right manner, and how to unlearn the same.


Unlearn? Let’s find out.


Machine Unlearning is a series broken up into tiny, one-minute readable pieces to humor our ever-shortening attention span. Sharing the links to every single piece right below:



Comments

Popular posts from this blog

The High State

 Before The Judgement I believe I must begin by addressing the pressing question - Was planning a vacation in the midst of a pandemic a recommended move?  No. Yet we went ahead with it. Here is why.  We (Nithya & I) were newly married, and our vividly planned vacation at the island of Langkawi was stolen away from us by the virus. Our stay in Delhi was coming to an end due to job-related moves, and we felt it would be a waste not to utilize this opportunity in exploring at least one of the tourist hot spots easily accessible from the national capital region. Let us end this section by answering another question - Are the reasons listed above good enough to risk a vacation during a pandemic? No. We had taken a calculated risk. Arrival at Manali There are two phases to this - planning and execution. We had not started planning with Manali in mind. There were numerous choices - starting from Jaipur and Amritsar to Nainital, Shimla, and Manali. After a bit of reading and deliberations,

Machine Unlearning #1 (Classification)

You can’t conclude a discussion on Machine Learning without mentioning classification. Classification is a machine learning technique where the machine is trained to predict the label of the given input data. Alright, let’s cut the jargon and get some real-world examples. Oranges and Bananas. Let’s assume that we have a box of fruits that contain some oranges and some bananas. You are asked to pick one fruit at random and tell if it is an orange or a banana. Pretty basic, right? For us, it is straightforward. We would know the answer at first sight. But, how would a computer be able to tell the difference? In classification, the machine would first be trained on some pre-labeled data. It would be shown an orange and we would tell it that the fruit is an orange. The machine would study the orange and remember its features - orange color and round shape. Then it would be shown a banana and the process is repeated. What are these features? A feature is anything that helps us uniquely labe