Skip to main content

Machine Unlearning #1 (Classification)

You can’t conclude a discussion on Machine Learning without mentioning classification. Classification is a machine learning technique where the machine is trained to predict the label of the given input data.

Alright, let’s cut the jargon and get some real-world examples. Oranges and Bananas.

Let’s assume that we have a box of fruits that contain some oranges and some bananas. You are asked to pick one fruit at random and tell if it is an orange or a banana.

Pretty basic, right?

For us, it is straightforward. We would know the answer at first sight. But, how would a computer be able to tell the difference?

In classification, the machine would first be trained on some pre-labeled data. It would be shown an orange and we would tell it that the fruit is an orange. The machine would study the orange and remember its features - orange color and round shape. Then it would be shown a banana and the process is repeated. What are these features? A feature is anything that helps us uniquely label the data. In our example, the color, size, shape - all could be features.

Oranges are round in shape and orange in color. Bananas are elongated and yellow in color. When the computer is given a random fruit, it would check the features of the fruit. If the fruit is round in shape and has an orangish hue, it might label the fruit as an orange.

Now, since we have a basic idea of what classification is, let us find out how we apply similar concepts in our lives. Our lives are full of labels. We get labeled based on our faith, our place of birth, the language we speak, our political affiliations, or even our generic belief systems. Though such labeling has always been there, the rise in usage of the same has shot up with the advent of social media.

Social media is where people from diverse backgrounds converge. It is only natural that a difference in opinion would ensue. However, labeling (and trying to degrade) people who have engaged in a debate with you on social media platforms based on the afore-mentioned features has been a disturbing trend of late.

More examples!

Suppose that news channel ABC posted an update about a key announcement by the government. Under that post, your friend X wrote a comment questioning the logic behind the latest announcement. Unsurprisingly, many replies would spring up under this comment, most interested in shutting your friend down and assigning them a label rather than actually discussing the point raised. Now, the label to be assigned to your friend depends on some features, the most prominent one being their name.

If X has a name that resembles that of the majority community, they are most likely to be labeled as a “sickular liberal” (Yes! New words are being invented). On the other hand, if X is from a minority community, chances are that they would be straight up labeled an “anti-national”.
Limiting labeling to the social media universe seems unfair since the practice is religiously followed outside of the virtual world as well. ‘Outspoken’ and ‘arrogant’ are common labels used to describe children who have a different opinion to the elders of the house. 

A popular female actor, who would traditionally be labeled ‘item’ and ‘bomb’ by the misogynistic mob, would easily be labeled a ‘feminazi’ the moment she decides to display her mind on the screen instead of skin.

What exactly is wrong with labeling? Labeling, inherently, is not wrong. But when we use labels to counter a point raised by a person, we reduce them to just that word. The questions raised by the person are then seen as politically motivated ramblings of the group represented by the label. This hinders healthy discussions and promotes bias.

How cool would it have been if we all looked at the points asked objectively without doting on the person who asked the question? Would that be a reality ever? I don’t know. I am agnostic! 

Machine Unlearning is a series broken up into tiny, one-minute readable pieces to humor our ever-shortening attention span. Sharing the links to every single piece right below:


Popular posts from this blog

Machine Unlearning #0 (Intro)

You might be familiar with the term Machine Learning. Worry not if you have not, cause I have tried to give a gist of the concept here. The term has been in the limelight of late and has been tossed around rather liberally to denote anything related to artificial intelligence, robotics, and data mining. Machine Learning, as the name suggests, could simply mean the field of study of enabling the “machines” (computers) to “learn” from past experiences and make informed decisions in the future.   Wait a minute! Learning from past experiences is something humans do, right? Exactly! The computer folks want computers to behave more and more like us. As if there aren't enough of us already. As the machines are becoming more like us, we are becoming more like them. Introspection time! Most of us wake up every morning like clockwork! Then we rush through the morning routines - get dressed, wade through the traffic, and reach our offices or schools or wherever people expect us to be. We spe

The High State

 Before The Judgement I believe I must begin by addressing the pressing question - Was planning a vacation in the midst of a pandemic a recommended move?  No. Yet we went ahead with it. Here is why.  We (Nithya & I) were newly married, and our vividly planned vacation at the island of Langkawi was stolen away from us by the virus. Our stay in Delhi was coming to an end due to job-related moves, and we felt it would be a waste not to utilize this opportunity in exploring at least one of the tourist hot spots easily accessible from the national capital region. Let us end this section by answering another question - Are the reasons listed above good enough to risk a vacation during a pandemic? No. We had taken a calculated risk. Arrival at Manali There are two phases to this - planning and execution. We had not started planning with Manali in mind. There were numerous choices - starting from Jaipur and Amritsar to Nainital, Shimla, and Manali. After a bit of reading and deliberations,